Theophilus Teo

Theophilus Teo

PhD Student

Theophilus Teo is a Ph.D. candidate with particular interests in Augmented Reality safety and awareness and remote collaboration. Before he commenced his Ph.D study, he graduated with a first class Honours from Bachelor of Software Engineering in University of South Australia. On year 2016, he participated in an ICT (Information and Communications Technology) project titled “VR for Big Data analytics” sponsored by CSIRO. He worked on the project with two other team members under Prof. Bruce Thomas’s supervision. Currently, he is doing his research degree under the supervision of Prof. Mark Billinghurst and Dr. Gun Lee in Empathic Computing Lab at University of South Australia.

Projects

  • SharedSphere

    SharedSphere is a Mixed Reality based remote collaboration system which not only allows sharing a live captured immersive 360 panorama, but also supports enriched two-way communication and collaboration through sharing non-verbal communication cues, such as view awareness cues, drawn annotation, and hand gestures.

Publications

  • Mixed Reality Collaboration through Sharing a Live Panorama
    Gun A. Lee, Theophilus Teo, Seungwon Kim, Mark Billinghurst

    Gun A. Lee, Theophilus Teo, Seungwon Kim, and Mark Billinghurst. 2017. Mixed reality collaboration through sharing a live panorama. In SIGGRAPH Asia 2017 Mobile Graphics & Interactive Applications (SA '17). ACM, New York, NY, USA, Article 14, 4 pages. http://doi.acm.org/10.1145/3132787.3139203

    @inproceedings{Lee:2017:MRC:3132787.3139203,
    author = {Lee, Gun A. and Teo, Theophilus and Kim, Seungwon and Billinghurst, Mark},
    title = {Mixed Reality Collaboration Through Sharing a Live Panorama},
    booktitle = {SIGGRAPH Asia 2017 Mobile Graphics \& Interactive Applications},
    series = {SA '17},
    year = {2017},
    isbn = {978-1-4503-5410-3},
    location = {Bangkok, Thailand},
    pages = {14:1--14:4},
    articleno = {14},
    numpages = {4},
    url = {http://doi.acm.org/10.1145/3132787.3139203},
    doi = {10.1145/3132787.3139203},
    acmid = {3139203},
    publisher = {ACM},
    address = {New York, NY, USA},
    keywords = {panorama, remote collaboration, shared experience},
    }
    One of the popular features on modern social networking platforms is sharing live 360 panorama video. This research investigates on how to further improve shared live panorama based collaborative experiences by applying Mixed Reality (MR) technology. SharedSphere is a wearable MR remote collaboration system. In addition to sharing a live captured immersive panorama, SharedSphere enriches the collaboration through overlaying MR visualisation of non-verbal communication cues (e.g., view awareness and gestures cues). User feedback collected through a preliminary user study indicated that sharing of live 360 panorama video was beneficial by providing a more immersive experience and supporting view independence. Users also felt that the view awareness cues were helpful for understanding the remote collaborator’s focus.
  • Hand gestures and visual annotation in live 360 panorama-based mixed reality remote collaboration
    Theophilus Teo, Gun A. Lee, Mark Billinghurst, Matt Adcock

    Theophilus Teo, Gun A. Lee, Mark Billinghurst, and Matt Adcock. 2018. Hand gestures and visual annotation in live 360 panorama-based mixed reality remote collaboration. In Proceedings of the 30th Australian Conference on Computer-Human Interaction (OzCHI '18). ACM, New York, NY, USA, 406-410. DOI: https://doi.org/10.1145/3292147.3292200

    BibTeX | EndNote | ACM Ref
    @inproceedings{Teo:2018:HGV:3292147.3292200,
    author = {Teo, Theophilus and Lee, Gun A. and Billinghurst, Mark and Adcock, Matt},
    title = {Hand Gestures and Visual Annotation in Live 360 Panorama-based Mixed Reality Remote Collaboration},
    booktitle = {Proceedings of the 30th Australian Conference on Computer-Human Interaction},
    series = {OzCHI '18},
    year = {2018},
    isbn = {978-1-4503-6188-0},
    location = {Melbourne, Australia},
    pages = {406--410},
    numpages = {5},
    url = {http://doi.acm.org/10.1145/3292147.3292200},
    doi = {10.1145/3292147.3292200},
    acmid = {3292200},
    publisher = {ACM},
    address = {New York, NY, USA},
    keywords = {gesture communication, mixed reality, remote collaboration},
    }
    In this paper, we investigate hand gestures and visual annotation cues overlaid in a live 360 panorama-based Mixed Reality remote collaboration. The prototype system captures 360 live panorama video of the surroundings of a local user and shares it with another person in a remote location. The two users wearing Augmented Reality or Virtual Reality head-mounted displays can collaborate using augmented visual communication cues such as virtual hand gestures, ray pointing, and drawing annotations. Our preliminary user evaluation comparing these cues found that using visual annotation cues (ray pointing and drawing annotation) helps local users perform collaborative tasks faster, easier, making less errors and with better understanding, compared to using only virtual hand gestures.
  • Mixed Reality Remote Collaboration Combining 360 Video and 3D Reconstruction
    Teo, T., Lawrence, L., Lee, G. A., Billinghurst, M., & Adcock, M.

    Teo, T., Lawrence, L., Lee, G. A., Billinghurst, M., & Adcock, M. (2019, April). Mixed Reality Remote Collaboration Combining 360 Video and 3D Reconstruction. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (p. 201). ACM.

    @inproceedings{teo2019mixed,
    title={Mixed Reality Remote Collaboration Combining 360 Video and 3D Reconstruction},
    author={Teo, Theophilus and Lawrence, Louise and Lee, Gun A and Billinghurst, Mark and Adcock, Matt},
    booktitle={Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems},
    pages={201},
    year={2019},
    organization={ACM}
    }
    Remote Collaboration using Virtual Reality (VR) and Augmented Reality (AR) has recently become a popular way for people from different places to work together. Local workers can collaborate with remote helpers by sharing 360-degree live video or 3D virtual reconstruction of their surroundings. However, each of these techniques has benefits and drawbacks. In this paper we explore mixing 360 video and 3D reconstruction together for remote collaboration, by preserving benefits of both systems while reducing drawbacks of each. We developed a hybrid prototype and conducted user study to compare benefits and problems of using 360 or 3D alone to clarify the needs for mixing the two, and also to evaluate the prototype system. We found participants performed significantly better on collaborative search tasks in 360 and felt higher social presence, yet 3D also showed potential to complement. Participant feedback collected after trying our hybrid system provided directions for improvement.
  • Supporting Visual Annotation Cues in a Live 360 Panorama-based Mixed Reality Remote Collaboration
    Teo, T., Lee, G. A., Billinghurst, M., & Adcock, M.

    Teo, T., Lee, G. A., Billinghurst, M., & Adcock, M. (2019, March). Supporting Visual Annotation Cues in a Live 360 Panorama-based Mixed Reality Remote Collaboration. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 1187-1188). IEEE.

    @inproceedings{teo2019supporting,
    title={Supporting Visual Annotation Cues in a Live 360 Panorama-based Mixed Reality Remote Collaboration},
    author={Teo, Theophilus and Lee, Gun A and Billinghurst, Mark and Adcock, Matt},
    booktitle={2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)},
    pages={1187--1188},
    year={2019},
    organization={IEEE}
    }
    We propose enhancing live 360 panorama-based Mixed Reality (MR) remote collaboration through supporting visual annotation cues. Prior work on live 360 panorama-based collaboration used MR visualization to overlay visual cues, such as view frames and virtual hands, yet they were not registered onto the shared physical workspace, hence had limitations in accuracy for pointing or marking objects. Our prototype system uses spatial mapping and tracking feature of an Augmented Reality head-mounted display to show visual annotation cues accurately registered onto the physical environment. We describe the design and implementation details of our prototype system, and discuss on how such feature could help improve MR remote collaboration.
  • A Technique for Mixed Reality Remote Collaboration using 360 Panoramas in 3D Reconstructed Scenes
    Theophilus Teo, Ashkan F. Hayati, Gun A. Lee, Mark Billinghurst, Matt Adcock

    @inproceedings{teo2019technique,
    title={A Technique for Mixed Reality Remote Collaboration using 360 Panoramas in 3D Reconstructed Scenes},
    author={Teo, Theophilus and F. Hayati, Ashkan and A. Lee, Gun and Billinghurst, Mark and Adcock, Matt},
    booktitle={25th ACM Symposium on Virtual Reality Software and Technology},
    pages={1--11},
    year={2019}
    }
    Mixed Reality (MR) remote collaboration provides an enhanced immersive experience where a remote user can provide verbal and nonverbal assistance to a local user to increase the efficiency and performance of the collaboration. This is usually achieved by sharing the local user's environment through live 360 video or a 3D scene, and using visual cues to gesture or point at real objects allowing for better understanding and collaborative task performance. While most of prior work used one of the methods to capture the surrounding environment, there may be situations where users have to choose between using 360 panoramas or 3D scene reconstruction to collaborate, as each have unique benefits and limitations. In this paper we designed a prototype system that combines 360 panoramas into a 3D scene to introduce a novel way for users to interact and collaborate with each other. We evaluated the prototype through a user study which compared the usability and performance of our proposed approach to live 360 video collaborative system, and we found that participants enjoyed using different ways to access the local user's environment although it took them longer time to learn to use our system. We also collected subjective feedback for future improvements and provide directions for future research.
  • OmniGlobeVR: A Collaborative 360° Communication System for VR
    Zhengqing Li , Liwei Chan , Theophilus Teo , Hideki Koike

    Zhengqing Li, Liwei Chan, Theophilus Teo, and Hideki Koike. 2020. OmniGlobeVR: A Collaborative 360° Communication System for VR. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems (CHI EA ’20). Association for Computing Machinery, New York, NY, USA, 1–8. DOI:https://doi.org/10.1145/3334480.3382869

    @inproceedings{li2020omniglobevr,
    title={OmniGlobeVR: A Collaborative 360 Communication System for VR},
    author={Li, Zhengqing and Chan, Liwei and Teo, Theophilus and Koike, Hideki},
    booktitle={Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems Extended Abstracts},
    pages={1--8},
    year={2020}
    }
    In this paper, we propose OmniGlobeVR, a novel collaboration tool based on an asymmetric cooperation system that supports communication and cooperation between a VR user (occupant) and multiple non-VR users (designers) across the virtual and physical platform. The OmniGlobeVR allows designer(s) to access the content of a VR space from any point of view using two view modes: 360° first-person mode and third-person mode. Furthermore, a proper interface of a shared gaze awareness cue is designed to enhance communication between the occupant and the designer(s). The system also has a face window feature that allows designer(s) to share their facial expressions and upper body gesture with the occupant in order to exchange and express information in a nonverbal context. Combined together, the OmniGlobeVR allows collaborators between the VR and non-VR platforms to cooperate while allowing designer(s) to easily access physical assets while working synchronously with the occupant in the VR space.