Maxwell Collins

Maxwell Collins

Virtual Intern

Max Collins is a PhD candidate in Informatics at UC Irvine working with Dr. Kurt Squire. He did his undergraduate work at University of Illinois at Urbana-Champaign where he studied Psychology and Informatics and worked with Dr. Alan Craig. Max has been building in the AR/VR space for 6 years, developing apps that interface with large external data sources, and is currently studying interaction techniques in AR that support different types of collaboration and communication.

Publications

  • XRTB: A Cross Reality Teleconference Bridge to incorporate 3D interactivity to 2D Teleconferencing
    Prasanth Sasikumar, Max Collins, Huidong Bai, Mark Billinghurst.

    Sasikumar, P., Collins, M., Bai, H., & Billinghurst, M. (2021, May). XRTB: A Cross Reality Teleconference Bridge to incorporate 3D interactivity to 2D Teleconferencing. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems (pp. 1-4).

    @inproceedings{sasikumar2021xrtb,
    title={XRTB: A Cross Reality Teleconference Bridge to incorporate 3D interactivity to 2D Teleconferencing},
    author={Sasikumar, Prasanth and Collins, Max and Bai, Huidong and Billinghurst, Mark},
    booktitle={Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems},
    pages={1--4},
    year={2021}
    }
    We present XRTeleBridge (XRTB), an application that integrates a Mixed Reality (MR) interface into existing teleconferencing solutions like Zoom. Unlike conventional webcam, XRTB provides a window into the virtual world to demonstrate and visualize content. Participants can join via webcam or via head mounted display (HMD) in a Virtual Reality (VR) environment. It enables users to embody 3D avatars with natural gestures and eye gaze. A camera in the virtual environment operates as a video feed to the teleconferencing software. An interface resembling a tablet mirrors the teleconferencing window inside the virtual environment, thus enabling the participant in the VR environment to see the webcam participants in real-time. This allows the presenter to view and interact with other participants seamlessly. To demonstrate the system’s functionalities, we created a virtual chemistry lab environment and presented an example lesson using the virtual space and virtual objects and effects.